Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \frac{dx}{1 + \sqrt{x}}\]
\[ = \int\frac{\sqrt{x} dx}{\sqrt{x} \left( 1 + \sqrt{x} \right)}\]
\[\text{Let 1} + \sqrt{x} = t\]
\[ \Rightarrow \sqrt{x} = t - 1\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[Now, \int\frac{\sqrt{x}}{\sqrt{x}\left( 1 + \sqrt{x} \right)}dx\]
\[ = 2\int\left( \frac{t - 1}{t} \right)dt\]
\[ = 2\int\left( 1 - \frac{1}{t} \right)dt\]
\[ = 2 \left( t - \text{log} \left| t \right| \right) + C\]
\[ = 2 \left( 1 + \sqrt{x} \right) - 2 \log \left| 1 + \sqrt{x} \right| + C\]
\[\text{Let} \text{ C }+ 2 = C'\]
\[ = 2\sqrt{x} - \text{2 log} \left( 1 + \sqrt{x} \right) + C'\]
APPEARS IN
संबंधित प्रश्न
` ∫ 1/ {1+ cos 3x} ` dx
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]