Advertisements
Advertisements
प्रश्न
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
योग
उत्तर
\[\int\sin x .\sin 2x .\text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\left( 2 \sin 2x \cdot \sin x \right) \text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\left[ \text{ cos} \left( 2x - x \right) - \text{ cos } \left( 2x + x \right) \right] \text{ sin 3x dx }.............. \left[ \because \text{ 2 sin A sin B = cos (A - B) - cos (A + B)} \right]\]
\[ \Rightarrow = \frac{1}{2}\int\left[ \cos x - \cos 3x \right] \text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\sin 3x \cdot \text{ cos x dx } - \frac{1}{2}\int\sin 3x \cdot \text{ cos 3x dx }\]
\[ = \frac{1}{4}\int \text{ 2 }\sin 3x \cdot \text{ cos x dx} - \frac{1}{4}\int\text{ 2 }\sin 3x \cdot \text{ cos 3x dx } \]
\[ = \frac{1}{4}\int\left[ \sin 4x + \sin 2x \right]dx - \frac{1}{4}\int\text{ sin 6x dx } ............. \left[ \because \text{ 2 sin A cos B = sin (A + B) - sin (A - B)} \right]\]
\[ = \frac{1}{4}\left[ \frac{- \cos 4x}{4} - \frac{\cos 2x}{2} \right] - \frac{1}{4}\left[ - \frac{\cos 6x}{6} \right] + C\]
\[ = - \frac{\cos 4x}{16} - \frac{\cos 2x}{8} + \frac{\cos 6x}{24} + C\]
\[ = \frac{1}{2}\int\left( 2 \sin 2x \cdot \sin x \right) \text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\left[ \text{ cos} \left( 2x - x \right) - \text{ cos } \left( 2x + x \right) \right] \text{ sin 3x dx }.............. \left[ \because \text{ 2 sin A sin B = cos (A - B) - cos (A + B)} \right]\]
\[ \Rightarrow = \frac{1}{2}\int\left[ \cos x - \cos 3x \right] \text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\sin 3x \cdot \text{ cos x dx } - \frac{1}{2}\int\sin 3x \cdot \text{ cos 3x dx }\]
\[ = \frac{1}{4}\int \text{ 2 }\sin 3x \cdot \text{ cos x dx} - \frac{1}{4}\int\text{ 2 }\sin 3x \cdot \text{ cos 3x dx } \]
\[ = \frac{1}{4}\int\left[ \sin 4x + \sin 2x \right]dx - \frac{1}{4}\int\text{ sin 6x dx } ............. \left[ \because \text{ 2 sin A cos B = sin (A + B) - sin (A - B)} \right]\]
\[ = \frac{1}{4}\left[ \frac{- \cos 4x}{4} - \frac{\cos 2x}{2} \right] - \frac{1}{4}\left[ - \frac{\cos 6x}{6} \right] + C\]
\[ = - \frac{\cos 4x}{16} - \frac{\cos 2x}{8} + \frac{\cos 6x}{24} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int \sin^2 \frac{x}{2} dx\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
` ∫ tan^5 x sec ^4 x dx `
\[\int \cot^6 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x^3 \text{ log x dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int \tan^5 x\ dx\]
\[\int \cos^5 x\ dx\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]