हिंदी

∫ 5 Cos X + 6 2 Cos X + Sin X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\left( \frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \right)dx\]
\[\text{ and  let 5 cos x + 6 }= A \left( 2 \ cosx + \sin x + 3 \right) + B\left( - 2 \sin x + \cos x \right) + C . . . . (1) \]
\[ \Rightarrow 5 \cos x + 6 = \left( A - 2B \right) \sin x + \left( 2A + B \right) \cos x + 3A + C\]

Comparing coefficients of like terms

\[A - 2B = 0 . . . \left( 2 \right)\]
\[2A + B = 5 . . . (3)\]
\[3A + C = 6 . . . (4)\]

Multiplying eq (3) by 2 and then adding to eq (2)

4A + 2B + A – 2B = 10

\[\Rightarrow\]A = 2

Putting value of A in eq (2) and eq (4) we get,
B = 1& C = 0

\[\text{ By putting the values of A, B and C in eq (1) we get ,} \]
\[ \therefore I = \int\left[ \frac{2 \left( 2 \cos x + \sin x + 3 \right) + \left( - 2 \sin x + \cos x \right)}{\left( 2 \cos x + \sin x + 3 \right)} \right]dx\]
\[ = 2\int dx + \int \left( \frac{- 2 \sin x + \cos x}{2 \cos x + \sin x + 3} \right)dx\]
\[\text{ Putting 2 cos x + sin x + 3 = t }\]
\[ \Rightarrow \left( - 2 \sin x + \cos x \right)dx = dt\]
\[ \therefore I = 2\int dx + \int\frac{1}{t}dt\]
\[ = 2x + \text{ ln }\left| 2 \cos x + \sin x + 3 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.24 | Q 5 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x^3 \cos x^2 dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×