हिंदी

∫ x 5 √ 1 + x 3 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\frac{x^5 dx}{\sqrt{1 + x^3}}\]
\[ = \int\frac{x^3 x^2 \text{ dx }}{\sqrt{1 + x^3}}\]
\[\text{ Putting x}^3 = t \]
\[ \Rightarrow 3 x^2 \text{ dx }= dt\]
\[ \Rightarrow x^2 \text{ dx }= \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int\frac{t \text{ dt}}{\sqrt{1 + t}}\]
\[ = \frac{1}{3}\int\left( \frac{1 + t - 1}{\sqrt{1 + t}} \right) dt\]
\[ = \frac{1}{3}\int\left( \sqrt{1 + t} - \frac{1}{\sqrt{1 + t}} \right) dt\]
\[ = \frac{1}{3} \left[ \frac{\left( 1 + t \right)^\frac{3}{2}}{\frac{3}{2}} - \frac{\left( 1 + t \right)^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{9} \left( 1 + t \right)^\frac{3}{2} - \frac{2}{3} \left( 1 + t \right)^\frac{1}{2} + C\]
\[ = \frac{2}{9} \left( 1 + x^3 \right)^\frac{3}{2} - \frac{2}{3} \left( 1 + x^3 \right)^\frac{1}{2} + C\]
\[ = \frac{2}{9} \left( 1 + x^3 \right)^\frac{1}{2} \left( 1 + x^3 - 3 \right) + C\]
\[ = \frac{2}{9} \sqrt{1 + x^3} \left( x^3 - 2 \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 103 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×