Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \text{ log } \left( x + 1 \right)dx\]
\[ = \int1 . \log \left( x + 1 \right)dx\]
\[\text{Taking log} \left( x + 1 \right) \text{ as the first function and 1 as the second function} . \]
\[ = \text{ log }\left( x + 1 \right)\int \text{ 1 dx } - \int\left[ \frac{d}{dx}\left\{ \log\left( x + 1 \right) \right\}\int1 dx \right]dx\]
\[ = x \text{ log} \left( x + 1 \right) - \int\frac{x}{x + 1}dx\]
\[ = x \text{ log }\left( x + 1 \right) - \int\frac{x + 1}{x + 1} - \frac{1}{x + 1}dx\]
\[ = x \text{ log }\left( x + 1 \right) - x + \text{ log } \left| x + 1 \right| + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]