हिंदी

∫ ( X + 1 ) E X Log ( X E X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
योग

उत्तर

\[\int\left( x + 1 \right)e^x  . \text{ log } \left( x \text{ e}^x \right) dx\]
\[\text{ Let x e}^x = t\]
\[ \Rightarrow \left( x . e^x + 1 . e^x \right)dx = dt\]
\[ \therefore \int \left( x + 1 \right) e^x . \text{ log } \left( x \text{ e }^x \right) dx = \int 1_{II} . \text{ log }_I\left( t \right) dt\]
\[ = \text{ log  t }\int1\text{  dt } - \int\left\{ \frac{d}{dt}\left( \text{ log  t } \right) - \int1  \text{ dt }\right\}dt\]
\[ = \text{ log }\left( t \right) \times t - \int\frac{1}{t} \times \text{ t  dt }\]
\[ = \text{ t  log }\left( t \right) - t + C . . . (1)\]
\[\text{Substituting the value of t in eq}     \text{ (1) }\]
\[ \Rightarrow \int \left( x + 1 \right) e^x . \text{ log } \left( x \text{ e}^x \right) dx = \left( \text{ x e}^x \right) . \text{ log }\left( x \text{ e}^x \right) - \text{ x e }^x + C\]
\[ = \text{ x e}^x \left\{ \text{ log }\left( \text{ x e}^x \right) - 1 \right\} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 34 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×