हिंदी

∫ 1 X S F R a C 1 3 ( X S F R a C 1 3 − 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx

योग

उत्तर

  `  Let  I =  ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


 ` ∫   1 / {x^{2/3} -   x^{1/3}}   ` dx
\[ \text{Let x }= t^3 \]
\[ \text{On differentiating both sides, we get}\]
\[ dx = 3 t^2 \text{  dt }\]
` ∴  I = ƒ {3 t^2}/ {( t^3 )^\{2/3} - ( t^3)^{1/3}}   dt  `


\[ = \int\frac{3 t^2}{t^2 - t}dt\]
\[ = 3\int\frac{t}{t - 1}dt\]
\[ = 3\int\frac{\left( t - 1 \right) + 1}{t - 1}dt\]
\[ = 3\int\left[ \left( 1 \right) + \frac{1}{t - 1} \right]dt\]
\[ = 3\left[ t + \text{ log }\left( t - 1 \right) \right] + c\]
` =  3 x ^{1/3 } + 3 log ( x^{1/3}  -1 ) + c `
Hence, ` ∫   1 /{x^{1/3} ( x^{1/3} -1)} dx = 3x^{1/3}   + 3  log  ( x^{1/3} -1 ) + c  `

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.10 | Q 10 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int \sin^2\text{ b x dx}\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int \tan^4 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×