Advertisements
Advertisements
प्रश्न
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
योग
उत्तर
\[\int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x dx\]
\[\text{Let 5}^x = t\]
\[ \Rightarrow 5^x \log 5 = \frac{dt}{dx}\]
\[ \Rightarrow 5^x dx = \frac{dt}{\log 5}\]
\[Now, \int 5^{5^{5^x}} \cdot 5^{5^x} \cdot 5^x dx\]
\[ = \int 5^{5^t} \cdot 5^t \cdot \frac{dt}{\log 5}\]
\[\text{Again let 5}^t = p\]
\[ \Rightarrow 5^t \log 5 = \frac{dp}{dt}\]
\[ \Rightarrow 5^t dt = \frac{dp}{\log 5}\]
\[Again \int 5^{5^t} \cdot 5^t \cdot \frac{dt}{\log 5}\]
\[ = \int 5^p \cdot \frac{dp}{\left( \log 5 \right)^2}\]
\[ = \frac{5^p}{\left( \log 5 \right)^3} + C\]
\[ = \frac{5^{5^{5^x}}}{\left( \log 5 \right)^3} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int \cot^5 x\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]