हिंदी

∫ X + √ X + 1 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
योग

उत्तर

\[We\ have, \]
\[I = \int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\text{Let}, x + 1 = t^2 \]
\[\text{Differentiating both sides we get}\]
\[dx = 2tdt\]
\[\text{Now, integration becomes}\]
\[I = \int\frac{\left( t^2 - 1 + t \right)}{t^2 + 1}2t dt\]
\[ = 2\int\frac{t^3 + t^2 - t}{t^2 + 1} dt\]
\[ = 2\int\frac{t^3 + t - t + t^2 + 1 - 1 - t}{t^2 + 1} dt\]
\[ = 2\int\frac{t^3 + t + t^2 + 1 - t - t - 1}{t^2 + 1} dt\]
\[ = 2\int\frac{t^3 + t}{t^2 + 1} dt + + 2\int\frac{t^2 + 1}{t^2 + 1} dt + 2\int\frac{- 2t - 1}{t^2 + 1} dt\]
\[ = 2\  ∫  tdt + 2\  ∫ dt - 2\int\frac{2t}{t^2 + 1} dt - 2\int\frac{1}{t^2 + 1} dt\]
\[ = t^2 + \text{2t - 2}\text{log }\left| t^2 + 1 \right| - 2 \tan^{- 1} t + C\]
\[ = \left( x + 1 \right) + 2\sqrt{x + 1} - 2\text{log} \left| x + 2 \right| - 2 \tan^{- 1} \sqrt{x + 1} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 63 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x \sin x \cos 2x\ dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \cos^5 x\ dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×