हिंदी

∫ Cos 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cos^5 x\ dx\]
योग

उत्तर

\[\text{ Let  I }= \int \cos^5 x \text{ dx }\]
\[ = \int \cos^4 x \cdot \text{ cos x dx}\] 
\[ = \int \left( \cos^2 x \right)^2 \text{ cos x dx} \]
\[ = \int \left( 1 - \sin^2 x \right)^2 \text{ cos x dx}\]
\[\text{ Putting  sin x = t}\]
\[ \Rightarrow \text{ cos x dx} = dt\]
\[ \therefore I = \int \left( 1 - t^2 \right)^2 \cdot dt\]
\[ = \int\left( t^4 - 2 t^2 + 1 \right) dt\]
\[ = \int t^4 \cdot dt - 2\int t^2 dt + \int dt\]
\[ = \frac{t^5}{5} - 2 \times \frac{t^{2 + 1}}{2 + 1} + t + C\]
\[ = \frac{t^5}{5} - \frac{2}{3} t^3 + t + C\]
\[ = \frac{\sin^5 x}{5} - \frac{2}{3} \sin^3 x + \sin x + C ........\left[ \because t = \sin x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 39 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×