हिंदी

∫ Sin 5 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^5 x\ dx\]
योग

उत्तर

\[\text{ Let I }= \int \sin^5 x \text{ dx }\]
\[ = \int \sin^4 x \cdot \text{ sin x dx}\]
\[ = \int \left( \sin^2 x \right)^2 \text{ sin x dx}\]
\[ = \int \left( 1 - \cos^2 x \right)^2 \text{ sin x dx}\]
\[ = \int\left( \cos^4 x - 2 \cos^2 x + 1 \right) \text{ sin x dx}\]
\[\text{ Putting cos x = t}\]
\[ \Rightarrow - \text{ sin x dx} = dt\]
\[ \Rightarrow \text{ sin x dx} = - dt\]
\[ \therefore I = - \int\left( t^4 - 2 t^2 + 1 \right) dt\]
\[ = - \int t^4 dt + 2\int t^2 dt - \int dt\]
\[ = \frac{- t^5}{5} + \frac{2 t^3}{3} - t + C\]
\[ = \frac{- \cos^5 x}{5} + \frac{2}{3} \text{ cos}^3 x - \cos x + C .......\left[ \because t = \cos x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 38 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×