हिंदी

∫ X √ 2 X + 3 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\sqrt{2x + 3} \text{ dx }\]
योग

उत्तर

\[ \text{  Let I }= \int \text{ x}\sqrt{2x + 3} \text{ dx }\]
\[ \text{  Putting 2x + 3 = t }\]
\[ \Rightarrow x = \frac{t - 3}{2}\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\left( \frac{t - 3}{2} \right) \sqrt{t} \text{ dt }\]
\[ = \frac{1}{4}\int\left( t - 3 \right) \sqrt{t} \text{ dt}\]
\[ = \frac{1}{4}\int\left( t^\frac{3}{2} - 3 t^\frac{1}{2} \right) \text{ dt }\]
\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} - 3 \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{4} \times \frac{2}{5} t^\frac{5}{2} - \frac{3}{4} \times \frac{2}{3}\text t^\frac{3}{2} + C\]
\[ = \frac{1}{10} \text{ t}^\frac{5}{2} - 2 t^\frac{3}{2} + C\]
\[ = \frac{1}{10} \left( 2x + 3 \right)^\frac{5}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{3}{2} + C .........\left[ \because t = 2x + 3 \right]\]
\[ = \frac{1}{10} \left( 2x + 3 \right)^\frac{5}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{3}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 34 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` ∫  sec^6   x  tan    x   dx `

\[\int \sin^5 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×