Advertisements
Advertisements
Question
Solution
\[ \text{ Let I }= \int \text{ x}\sqrt{2x + 3} \text{ dx }\]
\[ \text{ Putting 2x + 3 = t }\]
\[ \Rightarrow x = \frac{t - 3}{2}\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\left( \frac{t - 3}{2} \right) \sqrt{t} \text{ dt }\]
\[ = \frac{1}{4}\int\left( t - 3 \right) \sqrt{t} \text{ dt}\]
\[ = \frac{1}{4}\int\left( t^\frac{3}{2} - 3 t^\frac{1}{2} \right) \text{ dt }\]
\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} - 3 \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{4} \times \frac{2}{5} t^\frac{5}{2} - \frac{3}{4} \times \frac{2}{3}\text t^\frac{3}{2} + C\]
\[ = \frac{1}{10} \text{ t}^\frac{5}{2} - 2 t^\frac{3}{2} + C\]
\[ = \frac{1}{10} \left( 2x + 3 \right)^\frac{5}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{3}{2} + C .........\left[ \because t = 2x + 3 \right]\]
\[ = \frac{1}{10} \left( 2x + 3 \right)^\frac{5}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{3}{2} + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` = ∫1/{sin^3 x cos^ 2x} dx`
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`