English

∫ X √ 2 X + 3 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int x\sqrt{2x + 3} \text{ dx }\]
Sum

Solution

\[ \text{  Let I }= \int \text{ x}\sqrt{2x + 3} \text{ dx }\]
\[ \text{  Putting 2x + 3 = t }\]
\[ \Rightarrow x = \frac{t - 3}{2}\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\left( \frac{t - 3}{2} \right) \sqrt{t} \text{ dt }\]
\[ = \frac{1}{4}\int\left( t - 3 \right) \sqrt{t} \text{ dt}\]
\[ = \frac{1}{4}\int\left( t^\frac{3}{2} - 3 t^\frac{1}{2} \right) \text{ dt }\]
\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} - 3 \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{4} \times \frac{2}{5} t^\frac{5}{2} - \frac{3}{4} \times \frac{2}{3}\text t^\frac{3}{2} + C\]
\[ = \frac{1}{10} \text{ t}^\frac{5}{2} - 2 t^\frac{3}{2} + C\]
\[ = \frac{1}{10} \left( 2x + 3 \right)^\frac{5}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{3}{2} + C .........\left[ \because t = 2x + 3 \right]\]
\[ = \frac{1}{10} \left( 2x + 3 \right)^\frac{5}{2} - \frac{1}{2} \left( 2x + 3 \right)^\frac{3}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 34 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \sin^2 \frac{x}{2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \log_{10} x\ dx\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×