Advertisements
Advertisements
Question
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
Sum
Solution
\[\text{Let I} = \int\frac{\cos x}{2 + 3\sin x}dx\]
\[\text{Putting }\sin x = t \]
\[ \Rightarrow \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \text{cos x dx} = dt\]
\[ \therefore I = \int\frac{dt}{2 + 3t}\]
\[ = \frac{1}{3}\text{ln }\left| 2 + 3t \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\text{ln }\left| ax + b \right| + C \right]\]
\[ = \frac{1}{3} \text{ln} \left| 2 + 3 \sin x \right| + C \left[ \because t = \sin x \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
` ∫ tan x sec^4 x dx `
\[\int \cos^7 x \text{ dx } \]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
` ∫ x tan ^2 x dx
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]