English

∫ 1 Sin 4 X Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
Sum

Solution

\[\int\frac{dx}{\sin^4 x . \cos^2 x}\]
`  " Dividing   numerator  and denominator  " by   sin^2 x` 
\[ = \int\frac{\frac{1}{\sin^2 x}}{\sin^4 x . \cot^2 x}dx\]
\[ = \int\frac{{cosec}^6 x}{\cot^2}dx\]

 ` = ∫     { "cosec"^4  x   . "cosec"^2  x  dx}/cot^ 2 x `

` = ∫     { ("1  +cot"^2  x )^2  . "cosec"^2  x  dx}/cot^ 2 x `
\[Let \cot x = t\]
\[ \Rightarrow - {cosec}^2 x = \frac{dt}{dx}\]
\[ \Rightarrow - {cosec}^2 x \text{ dx } = dt\]
Now,` = ∫     { ("1  +cot"^2  x )^2  . "cosec"^2  x  dx}/cot^ 2 x `
\[ = \int \left( \frac{1 + t^2}{t} \right)^2 \left( - dt \right)\]
\[ = - \int\frac{\left( 1 + t^4 + 2 t^2 \right)}{t^2}dt\]
\[ = - \int\left( t^{- 2} + t^2 + 2 \right)dt\]
\[ = - \left[ \frac{t^{- 2 + 1}}{- 2 + 1} + \frac{t^3}{3} + 2t \right] + C\]
\[ = - \left[ - \frac{1}{t} + \frac{t^3}{3} + 2t \right] + C\]
\[ = - \frac{1}{3} t^3 - 2t + \frac{1}{t} + C\]
\[ = - \frac{1}{3} \cot^3 x - 2 \cot x + \frac{1}{\cot x} + C\]
\[ = - \frac{1}{3} \cot^3 x - 2 \cot x + \tan x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.12 [Page 73]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.12 | Q 10 | Page 73

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \cos^3 (3x)\ dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×