English

∫ X + 2 √ X 2 + 2 X − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\frac{\left( x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}}\]
\[\text{ Consider }, \]
\[x + 2 = A \frac{d}{dx} \left( x^2 + 2x - 1 \right) + B\]
\[ \Rightarrow x + 2 = A \left( 2x + 2 \right) + B\]
\[ \Rightarrow x + 2 = \left( 2A \right) x + 2A + B\]
\[\text{ Equating Coefficients of  like terms}\]
\[2A = 1\]
\[ \Rightarrow A = \frac{1}{2}\]
\[\text{ And }\]
\[2A + B = 2\]
\[ \Rightarrow 2 \times \frac{1}{2} + B = 2\]
\[ \Rightarrow B = 1\]
\[\text{ Then }, \]
\[I = \int\frac{\left[ \frac{1}{2} \left( 2x + 2 \right) + 1 \right]}{\sqrt{x^2 + 2x - 1}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}} + \int\frac{dx}{\sqrt{x^2 + 2x - 1}}\]
\[\text{ let x }^2 + 2x - 1 = t\]
\[ \Rightarrow \left( 2x + 2 \right) dx = dt\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \int\frac{dx}{\sqrt{x^2 + 2x - 1}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \int\frac{dx}{\sqrt{x^2 + 2x + 1 - 2}}\]
\[ = \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \int\frac{dx}{\sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2}}\]
\[ = \sqrt{t} + \text{ log  }\left| x + 1 + \sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2} \right| + C\]
\[ = \sqrt{x^2 + 2x - 1} + \text{ log }\left| x + 1 + \sqrt{x^2 + 2x - 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 7 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \sec^4 x\ dx\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×