English

∫ X 3 + X 2 + 2 X + 1 X 2 − X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
Sum

Solution

\[\text{ Let } I = \int\left( \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} \right) dx\]

\[\text{ Therefore }, \]
\[\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} = x + 2 + \frac{3x - 1}{x^2 - x + 1} . . . . . \left( 1 \right)\]
\[\text{ Let }\]
\[3x - 1 = A\frac{d}{dx} \left( x^2 - x + 1 \right) + B\]
\[3x - 1 = A \left( 2x - 1 \right) + B\]
\[3x - 1 = \left( 2A \right) x + B - A\]
\[ \text{Equating  Coefficients  of  like } terms\]
\[2A = 3\]
\[A = \frac{3}{2}\]
\[B - A = - 1\]
\[B - \frac{3}{2} = - 1\]
\[B = \frac{1}{2}\]
\[\int\left( \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} \right) dx = \int\left( x + 2 \right) dx + \int\left( \frac{\frac{3}{2} \left( 2x - 1 \right) + \frac{1}{2}}{x^2 - x + 1} \right) dx\]


\[ = \int\left( x + 2 \right) dx + \frac{3}{2} \int\left( \frac{2x - 1}{x^2 - x + 1} \right) dx + \frac{1}{2}\int\frac{dx}{x^2 - x + 1}\]
\[ = \int\left( x + 2 \right) dx + \frac{3}{2}\int\frac{\left( 2x - 1 \right) dx}{x^2 - x + 1} + \frac{1}{2}\int\frac{dx}{x^2 - x + \frac{1}{4} - \frac{1}{4} + 1}\]
\[ = \int\left( x + 2 \right) dx + \frac{3}{2}\int\frac{\left( 2x - 1 \right) dx}{x^2 - x + 1} + \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{x^2}{2} + 2x + \frac{3}{2} \text{ log }\left| x^2 - x + 1 \right| + \frac{1}{2} \times \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{x^2}{2} + 2x + \frac{3}{2} \text{ log } \left| x^2 - x + 1 \right| + \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2x - 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.2 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.2 | Q 8 | Page 106

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×