English

∫ X 2 + 1 X 4 + X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]
Sum

Solution

\[\text{ We have,} \]
\[I = \int \frac{\left( x^2 + 1 \right)dx}{x^4 + x^ 2 + 1}\]
\[\text{Dividing numerator and denominator by x^2 , we get}\]
\[I = \int \frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + 1 + \frac{1}{x^2}}\]
\[ = \int \frac{\left( 1 + \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} - 2 + 3}\]
\[ = \int \frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + 3}\]
\[\text{ Putting   x }- \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[ \therefore I = \int \frac{dt}{t^2 + 3}\]
\[ = \int\frac{dt}{t^2 + \left( \sqrt{3} \right)^2}\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{t}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left[ \frac{x - \frac{1}{x}}{\sqrt{3}} \right] + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{3} x} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.31 [Page 190]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.31 | Q 1 | Page 190

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \tan^4 x\ dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×