English

∫ E X [ Sec X + Log ( Sec X + Tan X ) ] D X - Mathematics

Advertisements
Advertisements

Question

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
Sum

Solution

\[\text{ Let I } = \int e^x \left[ \sec x + \text{ log }\left( \sec x + \tan x \right) \right]dx\]

\[\text{ Here, } f(x) = \text{ log }\left( \sec x + \tan x \right) Put e^x f(x) = t\]

\[ \Rightarrow f'(x) = \sec x \]

\[\text{ let e}^x \text{ log }\left( \sec x + \tan x \right) = t\]

\[\text{ Diff  both  sides  w . r . t x }\]

\[ e^x \text{ log }\left( \sec x + \tan x \right) + e^x \frac{1}{\sec x + \tan x}\left( \sec x + \tan x + \sec^2 x \right) = \frac{dt}{dx}\]

\[ \Rightarrow \left[ e^x \log\left( \sec x + \tan x \right) + e^x \left( \sec x \right) \right]dx = dt\]

\[ \Rightarrow e^x \left[ \sec x + \log\left( \sec x + \tan x \right) \right]dx = dt\]

\[ \therefore \int e^x \left[ \sec x + \text{ log} \left( \text{ sec x} + \tan x \right) \right]dx = \int dt\]

\[ = t + C\]

\[ = e^x \text{ log }|\left( \sec x + \tan x \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 8 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫   tan   x   sec^4  x   dx  `


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×