Advertisements
Advertisements
Question
Solution
\[\text{ Let I } = \int e^x \left[ \sec x + \text{ log }\left( \sec x + \tan x \right) \right]dx\]
\[\text{ Here, } f(x) = \text{ log }\left( \sec x + \tan x \right) Put e^x f(x) = t\]
\[ \Rightarrow f'(x) = \sec x \]
\[\text{ let e}^x \text{ log }\left( \sec x + \tan x \right) = t\]
\[\text{ Diff both sides w . r . t x }\]
\[ e^x \text{ log }\left( \sec x + \tan x \right) + e^x \frac{1}{\sec x + \tan x}\left( \sec x + \tan x + \sec^2 x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left[ e^x \log\left( \sec x + \tan x \right) + e^x \left( \sec x \right) \right]dx = dt\]
\[ \Rightarrow e^x \left[ \sec x + \log\left( \sec x + \tan x \right) \right]dx = dt\]
\[ \therefore \int e^x \left[ \sec x + \text{ log} \left( \text{ sec x} + \tan x \right) \right]dx = \int dt\]
\[ = t + C\]
\[ = e^x \text{ log }|\left( \sec x + \tan x \right) + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ tan x sec^4 x dx `
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]