English

∫ √ Tan X Sec 4 X D X - Mathematics

Advertisements
Advertisements

Question

` ∫    \sqrt{tan x}     sec^4  x   dx `

Sum

Solution

` ∫    \sqrt{tan x}     sec^4  x   dx `
\[ = \int\sqrt{\tan x} \cdot \sec^2 x \cdot \sec^2 x  \text{ dx }\]
\[ = \int\sqrt{\tan x} \cdot \left( 1 + \tan^2 x \right) \sec^2 x \text{ dx }\]
\[\text{Let }\tan x = t\]
\[ \Rightarrow \sec^2 x \text{ dx  }= dt\]
\[Now, \int\sqrt{\tan x} \cdot \left( 1 + \tan^2 x \right) \sec^2 x \text{ dx }\]
\[ = \int\sqrt{t} \left( 1 + t^2 \right) dt\]
\[ = \int\left( \sqrt{t} + t^\frac{5}{2} \right)dt\]
\[ = \int\left( t^\frac{1}{2} + t^\frac{5}{2} \right)dt\]
\[ = \frac{2}{3} t^\frac{3}{2} + \frac{2}{7} t^\frac{7}{2} + C\]
\[ = \frac{2}{3} \tan^\frac{3}{2} x + \frac{2}{7} \tan^\frac{7}{2} x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.11 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.11 | Q 6 | Page 69

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \log_{10} x\ dx\]

\[\int x^2 \tan^{- 1} x\ dx\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×