Advertisements
Advertisements
Question
` ∫ \sqrt{tan x} sec^4 x dx `
Solution
` ∫ \sqrt{tan x} sec^4 x dx `
\[ = \int\sqrt{\tan x} \cdot \sec^2 x \cdot \sec^2 x \text{ dx }\]
\[ = \int\sqrt{\tan x} \cdot \left( 1 + \tan^2 x \right) \sec^2 x \text{ dx }\]
\[\text{Let }\tan x = t\]
\[ \Rightarrow \sec^2 x \text{ dx }= dt\]
\[Now, \int\sqrt{\tan x} \cdot \left( 1 + \tan^2 x \right) \sec^2 x \text{ dx }\]
\[ = \int\sqrt{t} \left( 1 + t^2 \right) dt\]
\[ = \int\left( \sqrt{t} + t^\frac{5}{2} \right)dt\]
\[ = \int\left( t^\frac{1}{2} + t^\frac{5}{2} \right)dt\]
\[ = \frac{2}{3} t^\frac{3}{2} + \frac{2}{7} t^\frac{7}{2} + C\]
\[ = \frac{2}{3} \tan^\frac{3}{2} x + \frac{2}{7} \tan^\frac{7}{2} x + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
Integrate the following integrals:
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` = ∫ root (3){ cos^2 x} sin x dx `
Evaluate the following integrals:
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .