English

∫ 1 X 2 + 4 X − 5 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
Sum

Solution

\[\int\frac{1}{x^2 + 4x - 5}dx\]
\[ = \int\frac{1}{x^2 + 4x + 4 - 4 - 5}dx\]
\[ = \int\frac{1}{x^2 + 4x + 4 - 3^2}dx\]
\[ = \int\frac{1}{\left( x + 2 \right)^2 - 3^2}dx\]
\[ = \frac{1}{2 \times 3} \text{ ln} \left| \frac{x + 2 - 3}{x + 2 + 3} \right| + C ................. \left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]
\[ = \frac{1}{6} \text{ ln } \left| \frac{x - 1}{x + 5} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 45 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int {cosec}^3 x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \log_{10} x\ dx\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×