English

∫ Cos 3 X √ Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
Sum

Solution

\[\int\frac{\cos^3 x}{\sqrt{\sin x}}dx\]
\[ = \int\frac{\cos^2 x \cdot \cos x}{\sqrt{\sin x}} dx\]
\[ = \int\frac{\left( 1 - \sin^2 x \right) \cos x}{\sqrt{\sin x}}dx\]
\[Let \sin x = t\]
\[ \Rightarrow \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \text{cos x dx} = dt\]
\[Now, \int\frac{\left( 1 - \sin^2 x \right) \cos x}{\sqrt{\sin x}}dx\]
\[ = \int\frac{\left( 1 - t^2 \right)}{\sqrt{t}} \cdot dt\]
\[ = \int\left( \frac{1}{\sqrt{t}} - t^\frac{3}{2} \right)dt\]
\[ = \int\left( t^{- \frac{1}{2}} - t^\frac{3}{2} \right)dt\]
\[ = \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} - \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + C\]
\[ = 2\sqrt{t} - \frac{2}{5} t^\frac{5}{2} + C\]
\[ = 2\sqrt{\sin x} - \frac{2}{5} \ sin^\frac{5}{2} x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.09 | Q 13 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫      tan^5    x   dx `


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×