Advertisements
Advertisements
Question
Solution
= \[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 -(1 - \ sin ^2 x) - 7\sin x}dx\] `(∵ cos^2x =1 - sin^2 x)`
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\text{ sin^}2 x - 7\sin x + 12}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\text{ sin^}2 x - 4\sin x - 3\text{ sin } x + 12}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\sin x\left( \sin x - 4 \right) - 3\left( \sin x - 4 \right)}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right)\cos x}{\left( \sin x - 3 \right)\left( \sin x - 4 \right)}dx\]
\[\text{ Let sin x }= t\]
\[ \Rightarrow \text{ cos x dx }= dt\]
\[ \therefore I = \int\frac{\left( 3t - 2 \right)}{\left( t - 3 \right)\left( t - 4 \right)}dt\]
Using partial fraction, we get
\[\frac{\left( 3t - 2 \right)}{\left( t - 3 \right)\left( t - 4 \right)} = \frac{A}{\left( t - 3 \right)} + \frac{B}{\left( t - 4 \right)} = \frac{A\left( t - 4 \right) + B\left( t - 3 \right)}{\left( t - 3 \right)\left( t - 4 \right)}\]
\[ \Rightarrow 3t - 2 = (A + B)t - 4A - 3B\]
Comparing coefficients, we get
A = - 7 and B = 10
So,
\[\Rightarrow I = - 7\text{ ln }\left| t - 3 \right| + 10\text{ ln}\left| t - 4 \right| + c\]
\[ \therefore I = - 7\text{ ln }\left| \sin x - 3 \right| + 10 \text{ ln }\left| \sin x - 4 \right| + c\]
APPEARS IN
RELATED QUESTIONS
\[\int \sec^4 x\ dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]