English

∫ ( 3 Sin X − 2 ) Cos X 13 − Cos 2 X − 7 Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
Sum

Solution

I= \[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
 

  =  \[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 -(1 -  \ sin ^2  x) - 7\sin x}dx\]    `(∵  cos^2x =1 - sin^2 x)`
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\text{ sin^}2 x - 7\sin x + 12}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\text{ sin^}2 x - 4\sin x - 3\text{ sin } x + 12}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right) \cos x}{\sin x\left( \sin x - 4 \right) - 3\left( \sin x - 4 \right)}dx\]
\[ = \int\frac{\left( 3\sin x - 2 \right)\cos x}{\left( \sin x - 3 \right)\left( \sin x - 4 \right)}dx\]

\[\text{ Let sin x }= t\]
\[ \Rightarrow \text{  cos x dx }= dt\]
\[ \therefore I = \int\frac{\left( 3t - 2 \right)}{\left( t - 3 \right)\left( t - 4 \right)}dt\]

Using partial fraction, we get

\[\frac{\left( 3t - 2 \right)}{\left( t - 3 \right)\left( t - 4 \right)} = \frac{A}{\left( t - 3 \right)} + \frac{B}{\left( t - 4 \right)} = \frac{A\left( t - 4 \right) + B\left( t - 3 \right)}{\left( t - 3 \right)\left( t - 4 \right)}\]
\[ \Rightarrow 3t - 2 = (A + B)t - 4A - 3B\]

Comparing coefficients, we get

A = - 7 and = 10

So, 

\[I = - 7\int\frac{1}{\left( t - 3 \right)}dt + 10\int\frac{1}{\left( t - 4 \right)}dt\]

\[\Rightarrow I = - 7\text{ ln }\left| t - 3 \right| + 10\text{ ln}\left| t - 4 \right| + c\]
\[ \therefore I = - 7\text{ ln }\left| \sin x - 3 \right| + 10 \text{ ln }\left| \sin x - 4 \right| + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.19 [Page 104]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.19 | Q 14 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int {cosec}^3 x\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×