Advertisements
Advertisements
Question
\[\int \cos^5 x\ dx\]
Sum
Solution
\[\text{ Let I }= \int \cos^5 x \text{ dx }\]
\[ = \int \cos^4 x \cdot \text{ cos x dx}\]
\[ = \int \left( \cos^2 x \right)^2 \text{ cos x dx} \]
\[ = \int \left( 1 - \sin^2 x \right)^2 \text{ cos x dx}\]
\[\text{ Putting sin x = t}\]
\[ \Rightarrow \text{ cos x dx} = dt\]
\[ \therefore I = \int \left( 1 - t^2 \right)^2 \cdot dt\]
\[ = \int\left( t^4 - 2 t^2 + 1 \right) dt\]
\[ = \int t^4 \cdot dt - 2\int t^2 dt + \int dt\]
\[ = \frac{t^5}{5} - 2 \times \frac{t^{2 + 1}}{2 + 1} + t + C\]
\[ = \frac{t^5}{5} - \frac{2}{3} t^3 + t + C\]
\[ = \frac{\sin^5 x}{5} - \frac{2}{3} \sin^3 x + \sin x + C ........\left[ \because t = \sin x \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ tan^5 x dx `
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int x e^x \text{ dx }\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x \sin x \cos x\ dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]