Advertisements
Advertisements
Question
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
Sum
Solution
` Note:" Here, we are considering "log x as log_e x `
\[\text{Let I} = \int\frac{1 + \cot x}{x + \log \sin x}dx\]
\[\text{Putting}\ x + \log \ sin\ x = t\]
\[ \Rightarrow 1 + \ cot\ x = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 + \cot x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{log} \left| t \right| + C\]
\[ = \text{log }\left| x + \log \sin\ x \right| + C \left[ \because t = x + \log \sin x \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{a}{b + c e^x} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int \sin^3 x \cos^6 x \text{ dx }\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int \cos^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]