English

∫ X + 2 √ X 2 − 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{x + 2}{\sqrt{x^2 - 1}}dx\]
\[ = \int\frac{x}{\sqrt{x^2 - 1}}dx + 2\int\frac{dx}{\sqrt{x^2 - 1}}\]
\[\text{ let x }^2 - 1 = t\]
\[ \Rightarrow \text{ 2x dx  }= dt\]
\[ \Rightarrow\text{  x dx } = \frac{dt}{2}\]
\[\text{ Then }, \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} + 2\int\frac{dx}{\sqrt{x^2 - 1^2}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + 2\int\frac{dx}{\sqrt{x^2 - 1^2}}\]
\[ = \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + 2 \log \left| x + \sqrt{x^2 - 1} \right| + C\]
\[ = \sqrt{t} + 2 \text{ log }\left| x + \sqrt{x^2 - 1} \right| + C\]
\[ = \sqrt{x^2 - 1} + 2 \text{ log } \left| x + \sqrt{x^2 - 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 8 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

`∫     cos ^4  2x   dx `


\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×