English

∫ E X ( 1 − Cot X + Cot 2 X ) D X = - Mathematics

Advertisements
Advertisements

Question

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

Options

  •  ex cot x + C

  • ex cot x + C

  •  ex cosec x + C

  • ex cosec x + C

MCQ

Solution

ex cot x + 

\[\text{Let }I = \int e^x \left( 1 - \cot x + \cot^2 x \right)dx\]

\[ = \int e^x \left( {cosec}^2 x - \cot x \right)dx\]

\[\text{As we know that }\int e\left\{ f\left( x \right) + f' {}^x \left( x \right) \right\} = e^x f\left( x \right) + C\]

\[ \therefore I = - e^x \cot x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 201]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 14 | Page 201

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int \sin^2\text{ b x dx}\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^2 \text{ cos x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int \sin^4 2x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int \log_{10} x\ dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×