English

∫ Sin 4 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^4 2x\ dx\]
Sum

Solution

\[\int \sin^4 \text{ 2x dx }\]
\[ \Rightarrow \int \left( \sin^2 2x \right)^2 dx\]
\[ \Rightarrow \int \left[ \frac{1 - \cos 4x}{2} \right]^2 dx\]
\[ \Rightarrow \frac{1}{4}\int \left( 1 - \cos 4x \right)^2 \]
\[ \Rightarrow \frac{1}{4}\int\left( 1 + \cos^2 4x - 2 \cos 4x \right)dx\]
\[ \Rightarrow \frac{1}{4}\int\left[ 1 + \left( \frac{1 + \cos 8x}{2} \right) - 2 \cos 4x \right]dx\]
\[ \Rightarrow \frac{1}{4}\int\left[ \frac{3}{2} + \frac{\cos 8x}{2} - 2 \cos 4x \right]dx\]
\[ \Rightarrow \frac{1}{4}\left[ \frac{3x}{2} + \frac{\sin 8x}{16} - \frac{2 \sin 4x}{4} \right] + C\]
\[ \Rightarrow \frac{3x}{8} + \frac{\sin 8x}{64} - \frac{\sin 4x}{8} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 11 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


`∫     cos ^4  2x   dx `


\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×