Advertisements
Advertisements
Question
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
Sum
Solution
\[\int \text{cosec}^2 x .\text{ cos}^2 \text{ 2x dx} \]
\[ \Rightarrow \int\text{ cosec}^2 x \left( 1 - 2 \sin^2 x \right)^2 dx\]
\[ \Rightarrow \int \text{ cosec}^2 x \left( 1 + 4 \sin^4 x - 4 \sin^2 x \right)dx\]
\[ \Rightarrow \int\left( {cosec}^2 x + 4 \sin^2 x - 4 \right)dx\]
\[ \Rightarrow \int {cosec}^2 x \text{ dx} + 4\int\left( \frac{1 - \cos 2x}{2} \right)dx - 4\int dx\]
\[ \Rightarrow - \cot x + 2 \left[ x - \frac{\sin 2x}{2} \right] - 4x + C\]
\[ \Rightarrow - \cot x + 2x - \sin 2x - 4x + C\]
\[ \Rightarrow - \cot x - \sin 2x - 2x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x \sin^3 x\ dx\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]