Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int e^x \left( \cot x + \log \sin x \right)dx\]
\[\text{ Here,} f(x) = \log \sin x Put e^x f(x) = t\]
\[ \Rightarrow f'(x) = \cot x\]
\[\text{ let e}^x \log \sin x = t\]
\[\text{ Diff both sides w . r . t x}\]
\[ e^x \text{ log } \left( \sin x \right) + e^x \times \frac{1}{\sin x} \times \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \left[ e^x \text{ log}\left( \sin x \right) + e^x \cot x \right]dx = dt\]
\[ \Rightarrow e^x \left( \cot x + \text{ log }\sin x \right)dx = dt\]
\[ \therefore \int e^x \left( \cot x + \log \sin x \right)dx = \int dt\]
\[ = t + C\]
\[ = e^x \log \sin x + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]