English

∫ 1 + Sin X Sin X ( 1 + Cos X ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]

Sum

Solution

\[\text{ Let I } = \int\frac{\left( 1 + \sin x \right)}{\sin x \left( 1 + \cos x \right)}dx\]
\[\text{ Putting   sin x } = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\text{ and }\text{ cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{\left( 1 + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}{\frac{\left( 2 \tan \frac{x}{2} \right)}{\left( 1 + \tan^2 \frac{x}{2} \right)} \left( 1 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} \right) \left( 1 + \tan^2 \frac{x}{2} \right)}{\left( 2 \tan \frac{x}{2} \right) \left( 1 + \tan^2 \frac{x}{2} + 1 - \tan^2 \frac{x}{2} \right)}dx\]
\[ = \frac{1}{4}\int\frac{\left( 1 + \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} \right) \sec^2 \frac{x}{2}}{\tan \frac{x}{2}} \text{ dx}\]
\[\text{ Putting tan} \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) \text{ dx} = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) \text{ dx } = 2dt\]
\[ \therefore I = \frac{1}{4}\int\frac{\left( 1 + t^2 + 2t \right) \cdot \left( \text{ 2  dt} \right)}{t}\]
\[ = \frac{1}{2}\int\left( \frac{1}{t} + t + 2 \right) dt\]
\[ = \frac{1}{2} \left[ \text{ ln  }\left| t \right| + \frac{t^2}{2} + 2t \right] + C\]
\[ = \frac{1}{2} \left[ \text{ ln } \left| \text{ tan} \frac{x}{2} \right| + \frac{\tan^2 \left( \frac{x}{2} \right)}{2} + 2 \tan \left( \frac{x}{2} \right) \right] + C....... \left[ \because t = \tan \frac{x}{2} \right]\]
\[ = \frac{1}{2} \text{ ln } \left| \text{ tan  }\frac{x}{2} \right| + \frac{1}{4} \tan^2 \frac{x}{2} + \tan\frac{x}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 72 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×