English

∫ √ C O S E C X − 1 D X - Mathematics

Advertisements
Advertisements

Question

`  ∫ \sqrt{"cosec x"- 1}  dx `
Sum

Solution

`  ∫ \sqrt{"cosec x"- 1}  dx `
\[ = \int\sqrt{\frac{1}{\sin x} - 1}dx\]
\[ = \int\frac{\sqrt{1 - \sin x}}{\sqrt{\sin x}}dx\]
\[ = \int\frac{\sqrt{\left( 1 - \sin x \right) \left( 1 + \sin x \right)}}{\sqrt{\sin x \left( 1 + \sin x \right)}}dx\]
\[ = \int\frac{\sqrt{1 - \sin^2 x}}{\sqrt{\sin^2 x + \ sinx}}dx\]
` ∫ {cos  x  dx}/{\sqrt{sin^2 x + sin x}}`
\[\text{Let sin x} = t\]
` ⇒ cos  x   dx = dt  `

Now, `∫  { cos  x  dx }/\sqrt {sin^2  x + sin x} `
\[ = \int\frac{dt}{\sqrt{t^2 + t}}\]
\[ \int\frac{dt}{\sqrt{t^2 + t}}\]
\[ = \int\frac{dt}{\sqrt{t^2 + t + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = \int\frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = \text{ log }\left| \left( t + \frac{1}{2} \right) + \sqrt{\left( t + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2} \right| + C\]
\[ = \text{ log }\left| t + \frac{1}{2} + \sqrt{t^2 + t} \right| + C\]
\[ = \text{ log }\left| \sin x + \frac{1}{2} + \sqrt{\sin^2 x + \sin x} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.18 [Page 99]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.18 | Q 16 | Page 99

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫   tan   x   sec^4  x   dx  `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int \sin^4 2x\ dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int \tan^5 x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×