English

∫ 1 X 4 + 3 X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
Sum

Solution

\[\text{ We have}, \]
\[I = \int \frac{dx}{x^4 + 3 x^2 + 1}\]
\[ = \frac{1}{2}\int \frac{2 \text{ dx }}{x^4 + 3 x^2 + 1}\]
\[ = \frac{1}{2}\int\left[ \frac{\left( x^2 + 1 \right) - \left( x^2 - 1 \right)}{x^4 + 3 x^2 + 1} \right]dx\]
\[ = \frac{1}{2}\int\left( \frac{x^2 + 1}{x^4 + 3 x^2 + 1} \right)dx - \frac{1}{2}\int\frac{\left( x^2 - 1 \right)}{x^4 + 3 x^2 + 1}dx\]
\[\text{Dividing numerator and denominator by} \text{ x}^2 \]
\[ = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} + 3} \right)dx - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 3}\]
\[ = \frac{1}{2}\int\left( \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2} - 2 + 5} \right)dx - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{x^2 + \frac{1}{x^2} + 2 + 1}\]
\[ = \frac{1}{2}\int\frac{\left( 1 + \frac{1}{x^2} \right)dx}{\left( x - \frac{1}{x} \right)^2 + \left( \sqrt{5} \right)^2} - \frac{1}{2}\int\frac{\left( 1 - \frac{1}{x^2} \right)dx}{\left( x + \frac{1}{x} \right)^2 + 1^2}\]
\[\text{ Putting  x} - \frac{1}{x} = t\]
\[ \Rightarrow \left( 1 + \frac{1}{x^2} \right)dx = dt\]
\[\text{ Putting  x} + \frac{1}{x} = p\]
\[ \Rightarrow \left( 1 - \frac{1}{x^2} \right)dx = dp\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t^2 + \left( \sqrt{5} \right)^2} - \frac{1}{2}\int\frac{dp}{p^2 + 1^2}\]
\[ = \frac{1}{2\sqrt{5}} \tan^{- 1} \left( \frac{t}{\sqrt{5}} \right) - \frac{1}{2} \tan^{- 1} \left( p \right) + C\]
\[ = \frac{1}{2\sqrt{5}} \tan^{- 1} \left( \frac{x - \frac{1}{x}}{\sqrt{5}} \right) - \frac{1}{2} \tan^{- 1} \left( x + \frac{1}{x} \right) + C\]
\[ = \frac{1}{2\sqrt{5}} \tan^{- 1} \left( \frac{x^2 - 1}{\sqrt{5}x} \right) - \frac{1}{2} \tan^{- 1} \left( \frac{x^2 + 1}{x} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.31 [Page 190]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.31 | Q 10 | Page 190

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×