Advertisements
Advertisements
Question
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]
Sum
Solution
\[\int\sqrt{1 + 2x - 3 x^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{2}{3}x - x^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left( x^2 - \frac{2}{3}x \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left\{ x^2 - \frac{2}{3}x + \left( \frac{1}{3} \right)^2 - \left( \frac{1}{3} \right)^2 \right\}}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{1}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{4}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3} \left[ \frac{\left( x - \frac{1}{3} \right)}{2} \sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2} + \frac{\left( \frac{2}{3} \right)^2}{2} \sin^{- 1} \left( \frac{x - \frac{1}{3}}{\frac{2}{3}} \right) \right] + C ................................\left[ \because \int\sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{3x - 1}{6} \right) \sqrt{1 + 2x - 3 x^2} + \frac{2\sqrt{3}}{9} \sin^{- 1} \left( \frac{3x - 1}{2} \right) + C\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{2}{3}x - x^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left( x^2 - \frac{2}{3}x \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} - \left\{ x^2 - \frac{2}{3}x + \left( \frac{1}{3} \right)^2 - \left( \frac{1}{3} \right)^2 \right\}}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{1}{3} + \frac{1}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\frac{4}{9} - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3}\int\sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2}dx\]
\[ = \sqrt{3} \left[ \frac{\left( x - \frac{1}{3} \right)}{2} \sqrt{\left( \frac{2}{3} \right)^2 - \left( x - \frac{1}{3} \right)^2} + \frac{\left( \frac{2}{3} \right)^2}{2} \sin^{- 1} \left( \frac{x - \frac{1}{3}}{\frac{2}{3}} \right) \right] + C ................................\left[ \because \int\sqrt{a^2 - x^2}dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \left( \frac{3x - 1}{6} \right) \sqrt{1 + 2x - 3 x^2} + \frac{2\sqrt{3}}{9} \sin^{- 1} \left( \frac{3x - 1}{2} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int \cos^2 \frac{x}{2} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int x \sin^3 x\ dx\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]