English

∫ √ Cot θ D θ - Mathematics

Advertisements
Advertisements

Question

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]
Sum

Solution

\[\text{ We have,} \]

\[I = \int\sqrt{\cot \theta} d   \text{ θ}\]

\[\text{ Putting  cot} \text{ θ} = t^2 \]

\[ \Rightarrow - {cosec}^2 \text{ θ dθ}= 2t \text{ dt }\]

\[ \Rightarrow d\theta = - \frac{2t \text{ dt }}{\cos e c^2 \text{ θ }}\]

\[ \Rightarrow d\theta = \frac{- 2t \text{ dt}}{1 + co t^2 \text{ θ}}\]

\[ \Rightarrow d\theta = \frac{- 2t \text{ dt}}{1 + t^4}\]

\[ \therefore I = \int t\left( \frac{- 2t \text{ dt }}{1 + t^4} \right)\]

\[ = - \int\left( \frac{2 t^2}{1 + t^4} \right)dt\]

\[ = - \int\left( \frac{t^2 + 1 + t^2 - 1}{t^4 + 1} \right)dt\]

\[ = - \int\left( \frac{t^2 + 1}{t^4 + 1} \right)dt - \int\frac{\left( t^2 - 1 \right)dt}{t^4 + 1}\]

` \text{Dividing numerator and denominator by} \text{  t}^2 `

\[I = - \int\left( \frac{1 + \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt - \int\left( \frac{1 - \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt\]

\[ = - \int\frac{\left( 1 + \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} - 2 + 2} - \int\frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} + 2 - 2}\]

\[ = - \int\frac{\left( 1 + \frac{1}{t^2} \right)dt}{\left( t - \frac{1}{t} \right)^2 + \left( \sqrt{2} \right)^2} - \int\frac{\left( 1 - \frac{1}{t^2} \right)dt}{\left( t + \frac{1}{t} \right)^2 - \left( \sqrt{2} \right)^2}\]

\[\text{ Putting   t} - \frac{1}{t} = p\]

\[ \Rightarrow \left( 1 + \frac{1}{t^2} \right)dt = dp\]

\[\text{ Putting}\ t + \frac{1}{t} = q\]

\[ \Rightarrow \left( 1 - \frac{1}{t^2} \right)dt = dq\]

\[I = - \int \frac{dp}{p^2 + \left( \sqrt{2} \right)^2} - \int\frac{dq}{q^2 - \left( \sqrt{2} \right)^2}\]

\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{p}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{q - \sqrt{2}}{q + \sqrt{2}} \right| + C\]

\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{t + \frac{1}{t} - \sqrt{2}}{1 + \frac{1}{t} + \sqrt{2}} \right| + C\]

\[ = - \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{t^2 - 1}{\sqrt{2} t} \right) - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{t^2 + 1 - \sqrt{2}t}{t^2 + 1 + \sqrt{2}t} \right| + C\]

\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{\cot \theta - 1}{2\sqrt{\cot \theta}} \right) - \frac{1}{2\sqrt{2}}\text{ log } \left| \frac{\cot \theta + 1 - \sqrt{2 \cot \theta}}{\cot \theta + 1 + \sqrt{2 \cot \theta}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.31 [Page 190]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.31 | Q 2 | Page 190

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×