English

∫ 1 ( Sin X − 2 Cos X ) ( 2 Sin X + Cos X ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
Sum

Solution

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} dx\]

Dividing numerator and denominator by cos2x we get ,

\[I = \int\frac{\frac{1}{\cos^2 x}}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)}dx\]
\[ = \int\frac{\sec^2 x}{\left( \tan x - 2 \right) \left( 2 \tan x + 1 \right)} dx\]
\[\text{ Putting tan x = t }\]
\[ \Rightarrow \text{ sec}^2 \text{ x  dx} = dt\]
\[ \therefore I = \int\frac{1}{\left( t - 2 \right) \left( 2t + 1 \right)}dt\]
\[ = \int\frac{1}{2 t^2 + t - 4t - 2}dt\]
\[ = \int\frac{1}{2 t^2 - 3t - 2}dt\]
\[ = \frac{1}{2}\int\frac{1}{t^2 - \frac{3t}{2} - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{t^2 - \frac{3}{2}t + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{\left( t - \frac{3}{4} \right)^2 - \frac{9}{16} - 1}dt\]
\[ = \frac{1}{2}\int\frac{1}{\left( t - \frac{3}{4} \right)^2 - \left( \frac{5}{4} \right)^2}dt\]
\[ = \frac{1}{2} \times \frac{1}{2 \times \frac{5}{4}} \text{ ln }\left| \frac{t - \frac{3}{4} - \frac{5}{4}}{t - \frac{3}{4} + \frac{5}{4}} \right| + C ....................\left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{t - 2}{t + \frac{1}{2}} \right| + C\]
\[ = \frac{1}{5} \text{ ln } \left| \frac{2 \left( t - 2 \right)}{2t + 1} \right| + C\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{2 \left( \tan x - 2 \right)}{2 \tan x + 1} \right| + C................ \left[ \because t = \tan x \right]\]
\[ = \frac{1}{5} \text{ ln} \left| \frac{\tan x - 2}{2 \tan x + 1} \right| + \frac{1}{5} \text{ ln 2 + C }\]
\[ = \frac{1}{5} \text{ ln }\left| \frac{\tan x - 2}{2 \tan x + 1} \right| + C'\]
\[\text{ where } \]
\[C' = C + \frac{1}{5} \text{ ln 2 }\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 56 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×