English

∫ x 2 ( x − 1 ) 3 d x - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
Sum

Solution

\[\int\frac{x^2}{\left( x - 1 \right)^3}\text{ dx }\]
\[ = \int\left[ \frac{x^2 - 1 + 1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{\left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right)^3} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{x + 1}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{x - 1 + 2}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{1}{\left( x - 1 \right)} + \frac{2}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\frac{1}{x - 1}\text{ dx }+ 2\int \left( x - 1 \right)^{- 2} \text{ dx }+ \int \left( x - 1 \right)^{- 3} \text{ dx }\]
\[ = \text{ ln} \left| x - 1 \right| + 2 \left[ \frac{\left( x - 1 \right)^{- 2 + 1}}{- 2 + 1} \right] + \left[ \frac{\left( x - 1 \right)^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \text{ ln} \left| x - 1 \right| - \frac{2}{\left( x - 1 \right)} - \frac{\left( x - 1 \right)^{- 2}}{2} + C\]
\[ = \text{  ln }\left| x - 1 \right| - \frac{2}{x - 1} - \frac{1}{2 \left( x - 1 \right)^2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 33 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×