English

∫ Cot X + Cot 3 X 1 + Cot 3 X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]
\[I = \int\left( \frac{\cot x + \cot^3 x}{1 + \cot^3 x} \right) dx\]
\[ = \int\left[ \frac{\cot x \left( 1 + \cot^2 x \right)}{1 + \cot^3 x} \right]dx\]
\[ = \int\left( \frac{\cot x {cosec}^2 x}{1 + \cot^3 x} \right) dx\]
\[\text{Putting} \cot x = t\]
\[ \Rightarrow - \text{ cosec}^2 x\ dx = dt\]
\[ \Rightarrow \text{cosec}^2 x\ dx = - dt\]
\[ \therefore I = - \int\frac{\text{ t  dt}}{1 + t^3}\]
\[ = - \int\frac{\text{ t  dt}}{\left( 1 + t \right) \left( t^2 - t + 1 \right)}\]
\[\text{ Let  } \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = \frac{A}{t + 1} + \frac{Bt + C}{t^2 - t + 1}\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = \frac{A \left( t^2 - t + 1 \right) + \left( Bt + C \right) \left( t + 1 \right)}{\left( t + 1 \right) \left( t^2 - t + 1 \right)}\]
\[ \Rightarrow t = A \left( t^2 - t + 1 \right) + B t^2 + Bt + Ct + C\]
\[ \Rightarrow t = \left( A + B \right) t^2 + \left( B + C - A \right) t + A + C\]
\[\text{Equating Coefficients of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[B + C - A = 1 . . . . . \left( 2 \right)\]
\[A + C = 0 . . . . . \left( 3 \right)\]
\[\text{Solving} \left( 1 \right), \left( 2 \right) \text{and} \left( 3 \right), \text{we get}\]
\[A = - \frac{1}{3}\]
\[B = \frac{1}{3}\]
\[C = \frac{1}{3}\]
\[ \therefore \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = - \frac{1}{3 \left( t + 1 \right)} + \frac{1}{3} \left( \frac{t + 1}{t^2 - t + 1} \right)\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = - \frac{1}{3 \left( t + 1 \right)} + \frac{1}{6} \left[ \frac{2t + 2}{t^2 - t + 1} \right]\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = - \frac{1}{3 \left( t + 1 \right)} + \frac{1}{6} \left[ \frac{2t - 1 + 3}{t^2 - t + 1} \right]\]
\[ \therefore I = - \left[ - \frac{1}{3}\int\frac{dt}{t + 1} + \frac{1}{6}\int\left( \frac{2t - 1}{t^2 - t + 1} \right) dt + \frac{1}{2}\int\frac{dt}{t^2 - t + 1} \right]\]
\[ = + \frac{1}{3}\int\frac{dt}{t + 1} - \frac{1}{6}\int\left( \frac{2t - 1}{t^2 - t + 1} \right) dt - \frac{1}{2}\int\frac{dt}{t^2 - t + \frac{1}{4} - \frac{1}{4} + 1}\]
\[ = \frac{1}{3}\int\frac{dt}{t + 1} - \frac{1}{6}\int\frac{\left( 2t - 1 \right) dt}{\left( t^2 - t + 1 \right)} - \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[\text{ let t}^2 - t + 1 = p\]
\[ \Rightarrow \left( 2t - 1 \right) dt = dp\]
\[ \therefore I = \frac{1}{3}\int\frac{dt}{t + 1} - \frac{1}{6}\int\frac{dp}{p} - \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{3} \text{ log} \left| t + 1 \right| - \frac{1}{6} \text{ log} \left| p \right| - \frac{1}{2} \times \frac{2}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{t - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{1}{3} \text{ log }\left| t + 1 \right| - \frac{1}{6} \text{ log }\left| p \right| - \frac{1}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{2t - 1}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{3} \text{ log }\left| \cot x + 1 \right| - \frac{1}{6} \text{ log }\left| \cot^2 x - \cot x + 1 \right| - \frac{1}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{\text{ 2 cot  x} - 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 130 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^2 \sin^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×