English

∫ Log ( X + √ X 2 + a 2 ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
Sum

Solution

\[Let I = \int {1_{II} \cdot \log}_{} \left( x + \sqrt{x^2_I + a^2} \right)\text{ dx}\]
\[ = \text{ log} \left( x + \sqrt{x^2 + a^2} \right)\int1 \text{ dx} - \int\left[ \frac{d}{dx}\left\{ \text{ log }\left( x + \sqrt{x^2 + a^2} \right) \right\}\int1\text{ dx} \right]\]
\[ = \text{ log} \left( x + \sqrt{x^2 + a^2} \right) \cdot x - \int\left( \frac{1}{x + \sqrt{x^2 + a^2}} \right) \times \left( 1 + \frac{1 \times 2x}{2\sqrt{x^2 + a^2}} \right) \cdot x \cdot dx\]
\[ = \text{ log }\left( x + \sqrt{x^2 + a^2} \right) \cdot x - \int\frac{x}{\sqrt{x^2 + a^2}}dx\]
\[\text{Putting   x}^2 + a^2 = t\ \text{in the second integra}l\]
\[ \Rightarrow\text{  2x  dx = dt}\]
\[ \Rightarrow x \text{ dx }= \frac{dt}{2}\]
\[ \therefore I = x \cdot \text{ log } \left( x + \sqrt{x^2 + a^2} \right) - \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]
\[ = x \cdot \text{ log} \left( x + \sqrt{x^2 + a^2} \right) - \frac{1}{2}\int t^{- \frac{1}{2}} dt\]
\[ = x \cdot \text{ log } \left( x + \sqrt{x^2 + a^2} \right) - \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = x \cdot \text{ log }\left( x + \sqrt{x^2 + a^2} \right) - \sqrt{t} + C\]
\[ = x \cdot \text{ log }\left( x + \sqrt{x^2 + a^2} \right) - \sqrt{x^2 - a^2} + C.............. \left[ \because t = x^2 + a^2 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 97 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×