English

∫ ( X + 1 ) √ X 2 − X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
Sum

Solution

\[\text{ Let I } = \int \left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\text{ Also }, x + 1 = \lambda\frac{d}{dx}\left( x^2 - x + 1 \right) + \mu\]
\[ \Rightarrow x + 1 = \lambda\left( 2x - 1 \right) + \mu\]
\[ \Rightarrow x + 1 = \lambda\left( 2x - 1 \right) + \mu\]
\[ \Rightarrow x + 1 = \left( 2\lambda \right)x + \mu - \lambda\]
\[\text{Equating the coefficient of like terms}\]
\[2\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{2}\]
\[\text{ And }\]
\[\mu - \lambda = 1\]
\[ \Rightarrow \mu - \frac{1}{2} = 1\]
\[ \Rightarrow \mu = \frac{3}{2}\]
\[ \therefore I = \int\left[ \frac{1}{2}\left( 2x - 1 \right) + \frac{3}{2} \right] \sqrt{x^2 - x + 1}dx\]
\[ = \frac{1}{2}\int\left( 2x - 1 \right) \sqrt{x^2 - x + 1}dx + \frac{3}{2}\int\sqrt{x^2 - x + 1}dx\]
\[ = \frac{1}{2}\int\left( 2x - 1 \right) \sqrt{x^2 - x + 1} \text{ dx}+ \frac{3}{2}\int \sqrt{x^2 - x + \frac{1}{4} - \frac{1}{4} + 1} \text{ dx}\]
\[ = \frac{1}{2}\int\left( 2x - 1 \right) \sqrt{x^2 - x + 1} \text{ dx} + \frac{3}{2}\int\sqrt{\left( x - \frac{1}{2} \right)^2 + \frac{3}{4}}\text{ dx}\]
\[ = \frac{1}{2}\int\left( 2x - 1 \right) \sqrt{x^2 - x + 1} \text{ dx}+ \frac{3}{2}\int\sqrt{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\text{ dx}\]
\[\text{ Let x}^2 - x + 1 = t\]
\[ \Rightarrow \left( 2x - 1 \right)dx = dt\]
\[ \therefore I = \frac{1}{2}\int\sqrt{t} \text{ dt }+ \frac{3}{2}\int\sqrt{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} dx\]
\[ = \frac{1}{2} \times \left( \frac{t^\frac{3}{2}}{\frac{3}{2}} \right) + \frac{3}{2}\left[ \frac{x - \frac{1}{2}}{2} \sqrt{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} + \frac{3}{8}\text{ log } \left| x - \frac{1}{2} + \sqrt{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| \right] + C\]
\[ = \frac{1}{3} \left( x^2 - x + 1 \right)^\frac{3}{2} + \frac{3}{8}\left( 2x - 1 \right) \sqrt{x^2 - x + 1} + \frac{9}{16}\text{ log } \left| x - \frac{1}{2} + \sqrt{x^2 - x + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 158]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 1 | Page 158

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

` ∫      tan^5    x   dx `


\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x \cos x\ dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×