English

∫ X Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x \cos x\ dx\]
Sum

Solution

\[\int x \text{ cos x dx }\]
\[\text{Taking x as the first function and cos x as the second function} . \]
\[ = x\int\cos x dx - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ cos x dx }\right\}dx\]
\[ = x \sin x - \int\text{ sin x dx }\]
\[ = x \sin x + \cos x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 1 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^3 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×