English

∫ ( 1 − X 2 ) X ( 1 − 2 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
Sum

Solution

\[\text{ We have}, \]
\[I = \int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)}\text{ dx }\]
\[ = \int\left( \frac{- x^2 + 1}{- 2 x^2 + x} \right)dx\]
\[ = ∫\frac{1}{2}dx + \int\left( \frac{1 - \frac{x}{2}}{- 2 x^2 + x} \right) d x\]
\[ = \frac{1}{2}\int dx + \frac{1}{2}\int\frac{2 - x}{- 2 x^2 + x}dx\]
\[ = \frac{1}{2}\left[ \int dx + \int\frac{2 - x}{- 2 x^2 + x}dx \right]\]
\[ = \frac{1}{2}\left[ I_1 + I_2 \right] \left( \text{ say }\right)\]
\[\text{ where }I_1 = \int\ dx\ \text{and}\ I_2 = \int\frac{2 - x}{- 2 x^2 + x}dx\]
\[Now, I_1 = \int dx\]
\[ = x + C_1 \]
\[ I_2 = \int\frac{2 - x}{- 2 x^2 + x}dx\]
\[\text{ Let 2 }- x = \text{ A }\frac{d}{dx} \left( - 2 x^2 + x \right) + B\]
\[ \Rightarrow 2 - x = A \left( - 4x + 1 \right) + B\]
\[ \Rightarrow 2 - x = - 4Ax + A + B\]

Comparing coefficients of like terms

\[- 1 = - 4 A\]
\[ \Rightarrow A = \frac{1}{4}\]
\[\text{ and } A + B = 2\]
\[ \Rightarrow \frac{1}{4} + B = 2\]
\[ \Rightarrow B = 2 - \frac{1}{4}\]
\[ = \frac{8 - 1}{4}\]
\[ = \frac{7}{4}\]

\[\therefore \int\frac{2 - x}{- 2 x^2 + x}dx = \int\frac{\frac{1}{4}\left( - 4x + 1 \right) + \frac{7}{4}}{- 2 x^2 + x}dx\]
\[ = \int\frac{\frac{1}{4}\left( - 4x + 1 \right)}{- 2 x^2 + x}dx + \int\frac{\frac{7}{4}}{- 2 x^2 + x}dx\]
\[ = \frac{1}{4}\text{ log } \left| - 2 x^2 + x \right| + \frac{7}{4}\int\frac{1}{- 2\left( x^2 - \frac{x}{2} + \frac{1}{16} - \frac{1}{16} \right)}dx\]
\[ = \frac{1}{4}\text{ log } \left| - 2 x^2 + x \right| - \frac{7}{8}\int\frac{1}{\left\{ \left( x - \frac{1}{4} \right)^2 - \left( \frac{1}{4} \right)^2 \right\}}dx\]
\[ = \frac{1}{4}\text{ log } \left| x\left( - 2x + 1 \right) \right| - \frac{7}{8} \times \frac{1}{2 \times \frac{1}{4}}\text{ log }\left| \frac{x - \frac{1}{4} - \frac{1}{4}}{x - \frac{1}{4} + \frac{1}{4}} \right| + C_2 \]
\[ = \frac{1}{4}\text{ log } \left| x \right| + \frac{1}{4}\text{ log }\left| - 2x + 1 \right| - \frac{7}{4}\log\left| \frac{x - \frac{1}{2}}{x} \right| + C_2 \]
\[ = \frac{1}{4}\text{ log } \left| x \right| + \frac{1}{4}\text{ log } \left| - 2x + 1 \right| - \frac{7}{4}\text{ log } \left| x - \frac{1}{2} \right| + \frac{7}{4}\text{ log } \left| x \right| + C_2 \]
\[ = 2 \text{ log } \left| x \right| + \frac{1}{4}\text{ log } \left| - 2x + 1 \right| - \frac{7}{4}\text{ log } \left| 2x - 1 \right| + C_3 , \text{ where }C_3 = C_2 + \frac{7}{4}\text{ log } 2\]
\[ = 2 \text{ log } \left| x \right| + \frac{1}{4}\text{ log }\left| - 2x + 1 \right| - \frac{7}{4}\text{ log } \left| 1 - 2x \right| + C_3 \]
\[ = 2 \text{ log } \left| x \right| - \frac{3}{2}\text { log } \left| 1 - 2x \right| + C_3 \]
\[\text{ Thus }, I = \frac{1}{2}\left[ x + C_1 + 2 \text{ log } \left| x \right| - \frac{3}{2}\text{ log } \left| 1 - 2x \right| + C_3 \right]\]
\[ = \frac{1}{2}x + \text{ log } \left| x \right| - \frac{3}{4}\text{ log } \left| 1 - 2x \right| + C, \text{ where  C } = \frac{1}{2}\left[ C_1 + C_3 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.2 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.2 | Q 3 | Page 106

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x \cos^3 x\ dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×