English

∫ X 2 ( X 2 + 1 ) ( 3 X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{x^2 dx}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)}\]

Putting `x^2 = t`

\[\text{Then, }\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)}\]

\[\text{Let }\frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = \frac{A}{t + 1} + \frac{B}{3t + 4}\]

\[ \Rightarrow \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = \frac{A \left( 3t + 4 \right) + B \left( t + 1 \right)}{\left( t + 1 \right) \left( 3t + 4 \right)}\]

\[ \Rightarrow t = A \left( 3t + 4 \right) + B \left( t + 1 \right)\]

Putting `t + 1 = 0`

\[ \Rightarrow t = - 1\]

\[ \therefore - 1 = A \left( - 3 + 4 \right) + 0\]

\[ \Rightarrow A = - 1\]

Putting `3t + 4 = 0`

\[ \Rightarrow t = - \frac{4}{3}\]

\[ \therefore - \frac{4}{3} = 0 + B \left( - \frac{4}{3} + 1 \right)\]

\[ \Rightarrow - \frac{4}{3} = B \times \left( - \frac{1}{3} \right)\]

\[ \Rightarrow B = 4\]

\[ \therefore \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = - \frac{1}{t + 1} + \frac{4}{3t + 4}\]

\[ \Rightarrow \frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{- 1}{x^2 + 1} + \frac{4}{3 x^2 + 4}\]

\[ \Rightarrow \frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{- 1}{x^2 + 1} + \frac{4}{3 \left( x^2 + \frac{4}{3} \right)}\]

\[ \Rightarrow \int\frac{x^2 dx}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = - \int\frac{dx}{x^2 + 1} + \frac{4}{3}\int\frac{dx}{x^2 + \left( \frac{2}{\sqrt{3}} \right)^2}\]

\[ = - \tan^{- 1} \left( x \right) + \frac{4}{3} \times \frac{\sqrt{3}}{2} \tan^{- 1} \left( \frac{\sqrt{3}x}{2} \right) + C\]

\[ = - \tan^{- 1} \left( x \right) + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3}x}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 42 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^3 \sin x^4 dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×