Advertisements
Advertisements
Question
Solution
We have,
\[I = \int\frac{x^2 dx}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)}\]
Putting `x^2 = t`
\[\text{Then, }\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)}\]
\[\text{Let }\frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = \frac{A}{t + 1} + \frac{B}{3t + 4}\]
\[ \Rightarrow \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = \frac{A \left( 3t + 4 \right) + B \left( t + 1 \right)}{\left( t + 1 \right) \left( 3t + 4 \right)}\]
\[ \Rightarrow t = A \left( 3t + 4 \right) + B \left( t + 1 \right)\]
Putting `t + 1 = 0`
\[ \Rightarrow t = - 1\]
\[ \therefore - 1 = A \left( - 3 + 4 \right) + 0\]
\[ \Rightarrow A = - 1\]
Putting `3t + 4 = 0`
\[ \Rightarrow t = - \frac{4}{3}\]
\[ \therefore - \frac{4}{3} = 0 + B \left( - \frac{4}{3} + 1 \right)\]
\[ \Rightarrow - \frac{4}{3} = B \times \left( - \frac{1}{3} \right)\]
\[ \Rightarrow B = 4\]
\[ \therefore \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = - \frac{1}{t + 1} + \frac{4}{3t + 4}\]
\[ \Rightarrow \frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{- 1}{x^2 + 1} + \frac{4}{3 x^2 + 4}\]
\[ \Rightarrow \frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{- 1}{x^2 + 1} + \frac{4}{3 \left( x^2 + \frac{4}{3} \right)}\]
\[ \Rightarrow \int\frac{x^2 dx}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = - \int\frac{dx}{x^2 + 1} + \frac{4}{3}\int\frac{dx}{x^2 + \left( \frac{2}{\sqrt{3}} \right)^2}\]
\[ = - \tan^{- 1} \left( x \right) + \frac{4}{3} \times \frac{\sqrt{3}}{2} \tan^{- 1} \left( \frac{\sqrt{3}x}{2} \right) + C\]
\[ = - \tan^{- 1} \left( x \right) + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3}x}{2} \right) + C\]
APPEARS IN
RELATED QUESTIONS
Integrate the following integrals:
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]