Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int \sin^{- 1} \sqrt{x} dx\]
\[\text{ Putting } \sqrt{x} = \sin \theta\]
\[ \Rightarrow x = \sin^2 \theta\]
\[ \Rightarrow dx = 2 \sin \theta \text{ cos } \text{ θ dθ }\]
\[ \Rightarrow dx = \text{ sin}\left( 2\theta \right)d\theta\]
\[ \therefore I = \int \theta \text{ sin } \left( 2\theta \right)d\theta\]
\[ = \theta\left[ \frac{- \text{ cos }2\theta}{2} \right] - \int1\left( \frac{- \text{ cos }2\theta}{2} \right)d\theta\]
\[ = - \frac{\theta \text{ cos }\left( 2\theta \right)}{2} + \frac{1}{2}\int\text{ cos }\left( 2\theta \right)d\theta\]
\[ = - \frac{\theta \text{ cos} \left( 2\theta \right)}{2} + \frac{1}{2}\left[ \frac{\text{ sin} \left( 2\theta \right)}{2} \right] + C\]
\[ = \frac{- \sin^{- 1} \sqrt{x} \left( 1 - 2 \text{ sin}^2 \theta \right)}{2} + \frac{1}{2}\left[ \frac{2 \sin \theta \cos \theta}{2} \right] + C\]
\[ = \frac{- \sin \sqrt{x}\left( 1 - 2x \right)}{2} + \frac{\sin \theta\sqrt{1 - \sin^2 \theta}}{2} + C\]
\[ = \frac{- \sin^{- 1} \sqrt{x} \left( 1 - 2x \right)}{2} + \frac{\sqrt{x} \sqrt{1 - x}}{2} + C\]
\[ = - \frac{1}{2} \sin^{- 1} \left( \sqrt{x} \right) \left( 1 - 2x \right) + \frac{1}{2}\sqrt{x - x^2} + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]