English

∫ Sin − 1 √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^{- 1} \sqrt{x}\ dx\]
Sum

Solution

\[\text{We have}, \]

\[I = \int \sin^{- 1} \sqrt{x} dx\]

\[\text{ Putting } \sqrt{x} = \sin \theta\]

\[ \Rightarrow x = \sin^2 \theta\]

\[ \Rightarrow dx = 2 \sin \theta \text{ cos } \text{ θ   dθ }\]

\[ \Rightarrow dx = \text{ sin}\left( 2\theta \right)d\theta\]

\[ \therefore I = \int \theta \text{ sin } \left( 2\theta \right)d\theta\]

\[ = \theta\left[ \frac{- \text{ cos }2\theta}{2} \right] - \int1\left( \frac{- \text{ cos }2\theta}{2} \right)d\theta\]

\[ = - \frac{\theta \text{ cos }\left( 2\theta \right)}{2} + \frac{1}{2}\int\text{ cos }\left( 2\theta \right)d\theta\]

\[ = - \frac{\theta \text{ cos} \left( 2\theta \right)}{2} + \frac{1}{2}\left[ \frac{\text{ sin} \left( 2\theta \right)}{2} \right] + C\]

\[ = \frac{- \sin^{- 1} \sqrt{x} \left( 1 - 2 \text{ sin}^2 \theta \right)}{2} + \frac{1}{2}\left[ \frac{2 \sin \theta \cos \theta}{2} \right] + C\]

\[ = \frac{- \sin \sqrt{x}\left( 1 - 2x \right)}{2} + \frac{\sin \theta\sqrt{1 - \sin^2 \theta}}{2} + C\]

\[ = \frac{- \sin^{- 1} \sqrt{x} \left( 1 - 2x \right)}{2} + \frac{\sqrt{x} \sqrt{1 - x}}{2} + C\]

\[ = - \frac{1}{2} \sin^{- 1} \left( \sqrt{x} \right) \left( 1 - 2x \right) + \frac{1}{2}\sqrt{x - x^2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 110 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int x^3 \sin x^4 dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×