Advertisements
Advertisements
Question
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]
Options
\[\frac{e^x}{x + 4} + C\]
\[\frac{e^x}{x + 3} + C\]
\[\frac{1}{\left( x + 4 \right)^2} + C\]
\[\frac{e^x}{\left( x + 4 \right)^2} + C\]
Solution
\[\frac{e^x}{x + 4} + C\]
\[\text{Let }I = \int\frac{\left( x + 3 \right)}{\left( x + 4 \right)^2} e^x dx\]
\[ \Rightarrow \int\left[ \frac{x + 4 - 1}{\left( x + 4 \right)^2} \right] e^x dx\]
\[ \Rightarrow \int\left[ \frac{1}{\left( x + 4 \right)} - \frac{1}{\left( x + 4 \right)^2} \right] e^x dx\]
\[\text{As, we know that }\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx = e^x f\left( x \right) + C\]
\[ \therefore I = \frac{e^x}{x + 4} + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ tan^5 x dx `
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]