English

∫ X + 3 ( X + 4 ) 2 E X D X = - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]

Options

  • \[\frac{e^x}{x + 4} + C\]

  • \[\frac{e^x}{x + 3} + C\]

  • \[\frac{1}{\left( x + 4 \right)^2} + C\]

  • \[\frac{e^x}{\left( x + 4 \right)^2} + C\]

MCQ

Solution

\[\frac{e^x}{x + 4} + C\]

 

\[\text{Let }I = \int\frac{\left( x + 3 \right)}{\left( x + 4 \right)^2} e^x dx\]
\[ \Rightarrow \int\left[ \frac{x + 4 - 1}{\left( x + 4 \right)^2} \right] e^x dx\]
\[ \Rightarrow \int\left[ \frac{1}{\left( x + 4 \right)} - \frac{1}{\left( x + 4 \right)^2} \right] e^x dx\]
\[\text{As, we know that }\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx = e^x f\left( x \right) + C\]
\[ \therefore I = \frac{e^x}{x + 4} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 201]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 18 | Page 201

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

`  ∫  sin 4x cos  7x  dx  `

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

` ∫      tan^5    x   dx `


` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \cot^4 x\ dx\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×