English

∫ 1 √ 8 + 3 X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
Sum

Solution

\[\int\frac{dx}{\sqrt{8 + 3x - x^2}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x^2 - 3x \right)}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 \right)}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x - \frac{3}{2} \right)^2 + \frac{9}{4}}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2}}\]
\[ \Rightarrow \sin^{- 1} \left( \frac{x - \frac{3}{2}}{\frac{\sqrt{41}}{2}} \right) + C\]
\[ \Rightarrow \sin^{- 1} \left( \frac{2x - 3}{\sqrt{41}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.17 [Page 93]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.17 | Q 2 | Page 93

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x \sin^3 x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×