Advertisements
Advertisements
Question
Solution
\[\int\frac{dx}{\sqrt{8 + 3x - x^2}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x^2 - 3x \right)}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 \right)}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{8 - \left( x - \frac{3}{2} \right)^2 + \frac{9}{4}}}\]
\[ \Rightarrow \int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2}}\]
\[ \Rightarrow \sin^{- 1} \left( \frac{x - \frac{3}{2}}{\frac{\sqrt{41}}{2}} \right) + C\]
\[ \Rightarrow \sin^{- 1} \left( \frac{2x - 3}{\sqrt{41}} \right) + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]