Advertisements
Advertisements
Question
\[\int \left( e^x + 1 \right)^2 e^x dx\]
Sum
Solution
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[ = \int\left( e^{2x} + 2 e^x + 1 \right) e^x dx\]
\[ = \int\left( e^{3x} + 2 e^{2x} + e^x \right) dx\]
\[ = \left[ \frac{e^{3x}}{3} + \frac{2 e^{2x}}{2} + e^x \right] + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]
\[\int \tan^3 x\ dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int \sec^4 x\ dx\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .