English

∫ 1 ( X 2 + 1 ) √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int \frac{dx}{\left( x^2 + 1 \right) \sqrt{x}}\]
\[\text{ Putting  x }= t^2 \]
\[dx = 2t \text{ dt }\]
\[ \therefore I = \int \frac{2t \text{ dt }}{\left[ \left( t^2 \right)^2 + 1 \right]t}\]
\[ = 2\int \frac{dt}{t^4 + 1}\]
\[ = \int \left[ \frac{\left( t^2 + 1 \right) - \left( t^2 - 1 \right)}{\left( t^4 + 1 \right)} \right]dt\]
\[ = \int\left( \frac{t^2 + 1}{t^4 + 1} \right)dt - \int\left( \frac{t^2 - 1}{t^4 + 1} \right)dt\]
\[\text{Dividing numerator & denominator by }t^2 \]
\[I = \int\left( \frac{1 + \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt - \int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2}}\]
\[ = \int \frac{\left( 1 + \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} - 2 + 2} - \int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} + 2 - 2}\]
\[ = \int \frac{\left( 1 + \frac{1}{t^2} \right)dt}{\left( t - \frac{1}{t} \right)^2 + \left( \sqrt{2} \right)^2} - \int \frac{\left( 1 - \frac{1}{t^2} \right)dt}{\left( t + \frac{1}{t} \right)^2 - \left( \sqrt{2} \right)^2}\]
\[\text{ Putting t }- \frac{1}{t} = p\]
\[ \Rightarrow \left( 1 + \frac{1}{t^2} \right)dt = dp\]
\[\text{ Putting  t }+ \frac{1}{t} = q\]
\[ \Rightarrow \left( 1 - \frac{1}{t^2} \right)dt = dq\]
\[ \therefore I = \int\frac{dp}{p^2 + \left( \sqrt{2} \right)^2} - \int\frac{dq}{q^2 - \left( \sqrt{2} \right)^2}\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{p}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{q - \sqrt{2}}{q + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{t + \frac{1}{t} - \sqrt{2}}{t + \frac{1}{t} + \sqrt{2}} \right| + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t^2 - 1}{\sqrt{2}t} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{t^2 - \sqrt{2}t + 1}{t^2 + \sqrt{2}t + 1} \right| + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x - 1}{\sqrt{2x}} \right) - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{x - \sqrt{2x} + 1}{x + \sqrt{2x} + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 196]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 6 | Page 196

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \cot^5 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×