English

∫ Sin − 1 ( 3 X − 4 X 3 ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
Sum

Solution

\[\text{We have}, \]

\[I = \int \sin^{- 1} \left( 3x - 4 x^3 \right)dx\]

\[\text{ Putting x }= \sin \theta \Rightarrow \theta = \sin^{- 1} x\]

\[ \Rightarrow dx = \cos \text{  θ  dθ}\]

\[ \therefore I = \int \sin^{- 1} \left( 3 \sin \theta - 4 \sin^3 \theta \right) \cos \text{  θ  dθ}\]

\[ = \int \sin^{- 1} \left( \sin 3\theta \right) \cos \text{  θ  dθ}\]

\[ = 3\int \theta_I \text{ cos}_{II} \text{  θ  dθ}\]

\[ = 3 \left[ \theta \left( \sin \theta \right) - \int1 \sin \text{  θ  dθ} \right]\]

\[ = 3\left[ \theta \sin \theta + \cos \theta \right] + C\]

\[ = 3\left[ \theta \sin \theta + \sqrt{1 - \sin^2 \theta} \right] + C\]

\[ = 3 \left[ \sin^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]

\[ = 3 \left[ x \sin^{- 1} x + \sqrt{1 - x^2} \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 114 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

`∫     cos ^4  2x   dx `


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×