English

∫ Sin 3 ( 2 X + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

`∫     cos ^4  2x   dx `

Short Note

Solution

\[\int \cos^4 \text{2x dx}\]
\[ = \int \left( \cos^2 2x \right)^2 dx\]
\[ = \int \left( \frac{1 + \cos 4x}{2} \right)^2 dx \left[ \therefore \cos^2 x = \frac{1 + \cos 2x}{2} \right]\]
\[ = \frac{1}{4}\int \left( 1 + \cos 4x \right)^2 dx\]
\[ = \frac{1}{4}\int\left( 1 + \cos^2 4x + 2 \cos 4x \right)dx\]
\[ = \frac{1}{4}\int\left[ 1 + \left( \frac{1 + \cos 8x}{2} \right) + 2 \cos 4x \right]dx\]
\[ = \frac{1}{4}\int\left( \frac{3}{2} + \frac{\cos 8x}{2} + 2 \cos 4x \right)dx\]
\[ = \frac{1}{4}\left[ \frac{3x}{2} + \frac{\sin 8x}{16} + \frac{2 \sin 4x}{4} \right] + C\]


\[ = \frac{3x}{8} + \frac{\sin 8x}{64} + \frac{\sin 4x}{8} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.06 [Page 36]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.06 | Q 3 | Page 36

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×